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Abstract

The National Bureau of Standards, Industrial Systems Division designed the
Real-time Control System where high-level goals are decomposed through a
succession of levels, each producing strings of simpler commands to the next
Tower level. The bottom level generates the drive signals to the robot,
gripper, and other actuators. Each control level is a separate process with a
limited scope of responsibility, independent of the details at other levels,
thus providing a foundation for future modular, "plug compatible” hardware and
software for robots and real-time sensory interactive control applications.

To aid in specifying the required task decomposition and task processing, a
programming language and program development environment were implemented.
Programs at each control level are expressed as state tables, and the
programming environment permits the generation, editing, emulation, and
evaluation of these state tables. The control system is completely
interactive, allowing the system to run freely, or be single-stepped to any
level of detail.

By acceptance of this article. the Publisher and/or recipient acknowledges the U.S.
Government's right to retain a nonexclusive, royalty-free license in and to any
copynght covering this paper.
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l. INTRODUCTION

The theory behind the NBS Real-time Control System (RCS) has been under
development for almost a decade. References 1 to 5 document that research. A paper
describing the implementation details of RCS is in preparation. The following paper
describes the users view of the control system, including an example of a current
robot application. Figure 1 shows the major components of RCS. These components
can be described in terms of a user entry mechanism, hierarchically executing
control levels, common memory, communications, and a diagnostic module.

1.1 DATA, STATE TABLE, AND PROGRAM EDITORS

On the right side of figure 1 are the Data Form Editor, State Table Editor, and
Program Editor. These editors represent three levels at which a user can interact
with RCS. For entry of, or changes in data, a user uses the data forms system.
Using a set of forms, part descriptions, names, and locations of machines, fixtures,
etc., are entered. The data so entered is entirely distinct from the application
algorithms. Separating the task description from the data specification helps make
the control algorithms directly transferrable to many different workstations and
applications by a change in the data base description of the parts and worksite.

The data forms are detailed in section 3.2.

In RCS, application algorithms are specified via state tables, which primarily
perform task decomposition, and procedures called by these state tables which primar
ily perform computation. For a given application, most programming will be done via
the state tables alone. This will control the sequence of, and conditions under
which various procedures will be called. The State Table Editor provides a conve-
nient tool for editing state tables. State tables are described in detail in
section 2.8.

For major changes to RCS application codes it may be necessary to add or modify
procedures as well. A Program Editor is provided for this purpose. The specific
language in which these procedures are written is called SMACRO, a general purpose,
"full power,"” programming language. SMACRO is discussed in section 2.8.

The details of the editors are very conventional and will not be discussed
further in this paper. An RCS users manual which will contain these details is
in preparation.

1.2 CONTROL LEVELS

Complex control systems are built in RCS by implementing hierarchical control
levels. Each control level represents a well-defined clearly-bounded control func-
tion with a small number of inputs and outputs. Commands input at the highest level
are decomposed into sequences of subtasks which are passed as commands to the next
lower level in the hierarchy. This same procedure is repeated at each level until,
at the bottom of the hierarchy, a set of outputs is generated to actuators, inter-
locks, and signal lines to cause the necessary external response. The complexity at
any level in the hierarchy is held within manageable limits, regardless of the
complexity of the entire structure. Currently, for robot control, three robot
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independent control levels have been implemented and fully tested. These three
levels, called the TASK, E-MOVE, and PRIMITIVE levels are discussed in section 2.2.
Below the PRIMITIVE level there is a generic interface to any robot, and below that
there are two robot dependent control levels, The robot dependent levels of the
control system are beyond the scope of this paper.

1.3 COMMON MEMORY

Each of the functional elements of RCS can access a common memory. The systenm
dictionary, forms systems data, and communication buffers reside in this common
memory.

1.3.1 Data Dictionary

The system dictionary is by far the largest part of the common memory, storing
all of the variables, procedure, and state tables within the system. Named vari-
ables, named procedures, named state tables, lists of variables, and lists of
procedures, are all stored in the data dictionary. The user can view or change the
value of any variable, or list of variables’, can call for the execution of any pro-
cedure, a list of procedures, or execute one cycle of any state table, all by typing
the relevant variable, procedure, list, or state table name. The data dictionary is
strictly offline, and is not referenced during the actual execution of control
levels. The data dictionary will be discussed further in section 3.3,

1.3.2 Data

The part and location data which the user enters into the forms is tabularized
by the forms systems and stored in the data portion of common memory. None of the
state tables or procedures contain data, all data is referenced from the common
memory online just before the data is actually needed.

1.3.3 Communication Buffers
The communication buffers are the common memory buffers used for all transfer of
data betweeen every control level, every sensory system, and the interfaces to the

robot, gripper, and other external systems.

1.4 COMMUNICATIONS EDITOR

As described above, all intercommunication occurs via buffers stored in common
memory. Data source and destinations are specified via the communications editor by
giving the variable list name of the data source and its location, and the variable
list name of the destination and its location. The communication system executes
synchronously each and every cycle. The Communications Editor is further decribed
in section 3.1.

1.5 DIAGNOSTIC SYSTEM

RCS provides a user friendly, powerful Diagnostic System. Because all data
communication occurs through common memory every control cycle, the current state of
the machine is available from the common memory at any time. By accessing this data,
the Diagnostic System can provide real-time readout of values, transfer any values
to external systems, etc. The Diagnostic System also makes a log of the status of
the communications buffers and can actually step the system through these previous
machine states to locate the source of a problem. Included in the Diagnostic System
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is a very powerful Display Editor and Graphics Interface which supports real-time
plotting of variables, vectors, etc. The Diagnostic System is discussed in section 4.

2. CONTROL LEVELS

At the highest level of RCS, input commands provide an overall goal for the
system that is reached through a sequence of subgoals passed down to the next lower
level, which in turn, further decomposes those subgoals to be executed by lower
control levels. The output of each level depends on the command being processed,
the present state of the environment as indicated by sensory feedback data, the
internal state of the control level, and status feedback from the lower level.

2.1 STRUCTURE OF A CONTROL LEVEL

The atomic unit within a control level is a functionally bounded module, as shown
in figure 2. This module consists of inputs, a process, and outputs. Each function-
ally bounded module is given a name, shown in quotes to indicate it is an ASCII
string, and the module can be executed at any time by typing that name on the termi-
nal. Input variables can be changed by typing <variable name=new value> and the
value of any variable can be interrogated by typing <name ?>. Functionally bounded
modules are executed in fully compiled machine code form; hence, the interactive
capability does not severely impair efficiency.

Functionally bounded modules can be grouped within an executing owner with its
own name, as shown in figure 3. Typing the name of the owner causes the functionally
bounded modules to be executed in the order listed. The essential concept is to
keep modules distinct even when they will be executed together.

Executing owners are grouped into control levels. The structure of a control
level, shown in figure 4, is generic and every level has the identical structure. A
control level consists of a preprocess function, a state table function, and a post-
process function. Every control level is executed every cycle. The preprocess
functions are used to combine and/or convert incoming data into a format suitable
for the rest of the level. The postprocessing functions convert output data into
formats required for other systems. Decision processing in a control level is
done by a state table (ref 2). As shown in figure 4, the left side of the table is
a list of conditions which test the relevant state of the world as determined from
the input variables and internal machine state. Exactly one line of this table must
match with the relevant state of the world. 1In this case, the ouput procedures
listed on the right side of that state table line are executed. State tables will
be described in more detail later. For the present, we note several characteristics
of state tables which are not present in procedural software programs.

a. The NBS Robot Control System does not require interrupts. The state table
inputs are examined each cycle. If a particular input condition requires imme-
diate attention, this can be reflected in the state table, and because the
state table is examined every cycle it is guaranteed that whatever action is
required will be initiated within a maximum of 1 cycle time. It would of course
be possible for a user to write conventional software which produced the same
result, also without idterrupts, but the NBS Control System structures hides
much of the necessary detail from the user, and ensures consistency in complex
application code.

b. A large percentage of the code for robot applications will effect recovery from
various undesirable events. Using state tables organized into control levels as
described, additional situations can be handled by adding lines to the state
table. With conventional software a user must first figure out where in the
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code this particular situation may occur, and changes and/or patches may have

to be made in many places in the code. Stated differently, state tables isolate
those operations that are required for each specific situation, and let the
application designer think in this high level manner - what to do in each

case, independent of if then, loop, or other software control structures.

C. State tables separate the issue of when a function is performed from the
function itself. This attribute of state tables is synergistic with the inter-
active state tables mechanization which lets one execute single functionally
bounded modules or lists of functionally bounded modules independently. One
can debug the functions and the state tables which call the functions indepen-
dently. Again, it is possible to design conventional software such that the
control*flow portion of the algorithms call procedures to perform the computa-
tion. One can then develop the control flow code, leaving stubs for all the
procedures, etc., achleving some of advantages of the NBS control system. Again
RCS hides those details from the user and ensures consistency.

d. On the negative side, state tables tend to hide the sequence of execution.
Explicit specification of next states and/or state transition graphs can help
alleviate this shortfall.

Figure 5 shows the combination of control levels to form more complex
hierachical structures. Every cycle each level executes its preprocessing, state
table, and postprocessing functions. Each control level decomposes input commands
it receives into output subcommands which it sends to the level below, while report-
ing status back to the level above. All algorithms are built using symbolic variables,
which are attached to data during execution, at the point the data 1s required. The
interface between any two levels is identical in mechanisms, hopefully providing a
foundation for future modular, “plug compatible” hardware and software for robotics
and other real-time sensory interactive control applications. Figure 6 shows the
TASK, ELEMENTAL-MOVE (E-MOVE), and PRIMITIVE levels as they are currently implemented.
The commands and data to each level and to the vision system are shown, as is the
status and data back from each level.,

2.2 DETAILS OF THE CONTROL LEVELS

2.2.1 TASK Level

The TASK level develops a sequence of high level goal points using object and
location point names provided in its command from the workstation.

Commands from the WORKSTATION to the TASK LEVEL are:
ACQUIRE (OBJ [at A])

From its current position, the robot will go to position A, (SOURCE), and grasp
the named object, (OBJ). 1If no location A is specified, then the object will be
acquired from the robot's current location.

MOVE ({0BJ from A] to B)
The robot will acquire the named object from location A, (SOURCE), and will move

it to B (DEST), but will not release the object. If (OBJ from A) is not specified,
the robot will move from its current position to B.
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RELEASE [end-at A]

The robot will release the object it is holding at its present position and move
to position A. If A is not specified, the robot will move to the "SAFE" position
associated with its current location (e.g., if the robot is at the fixture it will
move to the fixture safe location a few centimeters above the fixture).

TRANSFER ([OBJ from A] to B [end-at C])

The robot will acquire the named object from location A, (SOURCE), release it at
position B (DEST), and move to C (END-AT). If (OBJ from A) is not specified, and if
the robot 1s already holding an object, that object will be moved to B, 1If
(end~at C) is not specified the safe position for B will be used as the end-at
location.

CLEAR (drop-at A [end-at B})

The robot will go to position A and release the part it is currently holding.
Then it will end—-at B. If B is unspecified the safe position of A is used.

Figure 7 shows the sequence of the above commands issued by the WORKSTATION to
the TASK level of the RCS to manufacture a box, a sample part which has been
manufactured automatically at NBS. The MOVE, RELEASE, ACQUIRE, and TRANSFER com-—
mands are commands from the workstation to the TASK level of the control system.

The other lines in figure 7, are commands to the vise and to the machine tool
controller,

2.2.2 E-MOVE Level

The TASK level issues commands to the E-MOVE level to implement the commands
from the WORKSTATION. In general, the E-MOVE level develops a trajectory between
the last commanded high level goal point and the current goal point. A trajectory
may be simply a straight line between two goal points, or more complex, involving
departure, intermediate, and approach trajectories. The commands from the TASK level
to the E-MOVE level are:

LOCATE (OBJ)

First, the gripper is opened fully to allow the robot vision an unobstructed
view of the scene. Then the robot will analyze the scene currently in its view.
Using the vision system, it will identify the specified object and determine its
orientation. The robot will then close the grippers to the approach opening for
that object. Finally the robot is positioned such that closing the grippers will
grasp the object. The database provides the physical characteristics of the named
OBJ to the vision system. The details of the recognition algorithm are defined in
the vision system. If the specified object cannot be identified, a locate failure
is returned to the TASK level.

PICK-UP (OBJ)

The gripper 1s closed until the gripping force on the object reaches the
prespecified value., The lower level will return a grasp failure if the final gripper
opening is not within the required tolerance. The object size is acquired from the
database and the gripper opening 1is part of the status data passed up from the
Gripper Controller.
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MOVE-TO (LOCATION)

The robot is moved from the current location to the named destination location,
The MOVE-TO command successively accesses the points along the desired trajectory,
commanding the PRIMITIVE level to GOTHRU each point until the last point, at which
time a GOTO command is issued to GOTO that last point.

MOVE-TO-0BJ (0OBJ, NAMED-LOCATION)

MOVE-TO-OBJ 1is exactly the same as MOVE-TO except that the approach opening for
the named object is accessed from the database and before moving, the grippers are
opened to the approach opening of the specified object.

RELEASE (OBJ)

The RELEASE command opens the gripper to the release opening specified in the
database for the specific OBJ at its current location.

PAUSE

Each level has a pause command. When received, it passes a "pause"” down, and a
done back up to the level above.

The E-MOVE level is the only level that is currently interfaced with the vision
system. The vision system is capable of many complex operations including visual
servoing at frame rates, and comparison of the current image with the expected image
as determined from a world model. Currently, however, only two vision commands are
used by the control system. They are:

FLOOD-FLASH (OBJ, EXPECTED RANGE)

The name of the OBJ and the expected range of the object are passed to the
vision system. The vision system accesses the vision database to acquire the feature
values of the object, and compares these features to the object or objects in its
field of view. It locates the image of the correct object and returns the x and y
offset in mm in camera coordinates of the object and the roll angle of the object.

It also returns the range of the object based upon an assumed surface orientation.

LINE-FLASH (OBJ, EXPECTED RANGE, EXPECTED SURFACE-NORMAL-VECTOR)

Upon receiving this command, the vision system takes a 2-line structured
light picture. This picture reveals the range and surface orientation of the
observed object. If the measured surface orientation and range do not match with
the expected surface orientation and range, then the vision system returns a “"line-
flash fail", Otherwise it returns the measured range. Several of the test parts
manufactured in the NBS experimental factory have identical top surface dimesions
and can only be distinguished by their thickness. The line flash command is used to
verify that the correct part was being observed. Ranges could be resolved to .2%.
This yields, for the viewing distance used, approximately lmm. resolution. Surface
orientation can be determined to approximately 2%Z. The vision system functioned
without problem in all of the ambient light conditions experienced, and contains
hardware and algorithms to help alleviate problems usually encountered in dealing
with highly reflective parts.
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2.2.3 PRIMITIVE Level

The PRIMITIVE level is the level which interfaces with the robot and gripper.
The NBS control system fully supports having multiple systems (the robot and the
gripper controller for example) functioning simultaneously. The PRIMITIVE level
generates intermediate points along a trajectory defined by the E-MOVE level, and
passes these points to the robot dependent control levels., The E-MOVE level also
passes to the PRIMITIVE level a pointer to trajectory parameters including maximum
acceleration, speed, etc.

GOTO (POINT)

The GOTO command will cause the robot to move in a straight line to the desired
point. As it nears that point it decelerates and stops at the destination point.

GOTHRU (POINT)

The GOTHRU command is identical to the GOTO command except that the robot does
not decelerate as it approaches the commanded point. A "done” is returned to the
E-MOVE level when the robot comes within a breakpoint distance of the specified
destination. The E-MOVE level then sends the next point while robot continues to
move.

APPROACH-POSITION-FINGERS (END-EFFECTOR-PARA-PTR)

The system database includes an end-effector parameter table which specifies
the approach opening, departure opening, and grip opening for each part. The E-MOVE
level passes a pointer to this table to the PRIMITIVE level. The APPROACH-POSITION-
FINGERS command passes a command and data to the gripper controller to open the
gripper to the approach-opening of a specific object. If the gripper, for some
reason, cannot carry out that command, a "grip failure"” is reported to the E-MOVE
level.

DEPARTURE-POSITION-FINGERS (END-EFFECTOR-PARA—~PTR)

DEPARTURE-POSITION-FINGERS is the same as the APPROACH-POSITION-FINGERS except
that the departure-opening is passed to the gripper control system instead of the
approach—-opening.

IMMED-GRASP (END-EFFECTOR~PARA-PTR)

This command directs the gripper controller to close the gripper until the
default force of 100 lbs is encountered on the fingers. Then the part size pointed
to by END-EFFECTOR-PARA-PTR is checked against the current finger spacing of the

gripper. If the two values do not match within tolerance, the PRIMITIVE level
returns a "grip failure” to the E-MOVE level.

PAUSE

Reports done to the level above, and directs the lower level to PAUSE.
2.2.4 Below the PRIMITIVE Level
2.2.4.1 Robot Interface

The PRIMITIVE level provides the robot nine numbers every cycle. These nine
values are the x, y, z coordinates of the center of the wrist plate, defining its
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position in space; the x, y, z value of a unit vector pointing normal to the Wrist
plate defining its orientation, and the x, y, z value of a unit vector defining the
rotation of the wrist plate. This specification of the position of the robot {ig
unambiguous, and may be sufficiently generic that it (or a similar interface) cap
provide the basis for a standard at some time in the future, The coordination of
joint motion to achieve the required pose is robot dependent and may be performeq by
the robot controller, or by another control level. )

2.2.4.2 Gripper Interface
Currently, only two commands are being used.
POSITION (GRIPPER-OPENING, FORCE, SPEED)

This command will servo the gripper to the specified opening at the specified
speed. If the force on the fingers exceeds the specified force before the grippers
are within tolerance of the specified opening, a "grip failure” is returned.

GRASP (GRIPPER-OPENING, FORCE, SPEED)

The grippers are closed at the specified speed until the force on the fingers
exceeds the specified force. The gripper controller continually returns the current

gripper—-opening.
2.3 EXAMPLE

In order to better understand the task decomposition performed by the TASK,
E-MOVE, and PRIMITIVE levels consider the command

TRANSFER FLAG FROM TRAY TO FIXTURE
passed to the TASK LEVEL. This command would be decomposed into:

MOVE-TO TRAY

LOCATE FLAG

PICKUP FLAG

MOVE-TO FIXTURE
RELEASE FLAG

MOVE-TO FIXTURE-SAFE

These commands would then be implemented by the E-MOVE level.

The E-MOVE level must decompose each of these commands into still finer
commands. The most complex of these commands is MOVE-TO TRAY so we will describe
that command's decomposition.

At some previous time, a user of RCS would have entered data into the forms
system. This data would specify geometry of each part, location of each point,
approach and departure paths to be followed to/from named locations, and intermediate
trajectories. The E-MOVE level would successively access the departure trajectory
from its current location, the intermediate trajectory, and the approach trajectory
to the final goal point, issuing GOTHRU and GOTO commands to the PRIMITIVE level
for each of those points. When the last GOTO has been completed by the PRIMITIVE
level, the E-MOVE level has completed its task and it returns a done status to the
TASK level.
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The PRIMITIVE level calls an RCS function (STLINE) to calculate a straight line
path between the current location and the goal passed to the PRIMITIVE level from
E-MOVE. The move calculated is that to be made by the end point of the robot hand,
but in addition, this level calculates the motion to be made by the robot wrist and
fingers to cause a smooth transition from the present orientation to that of the goal
point.

2.4 STATE TABLES

As has been described previously, the task decomposition within a control level
is primarily performed through a state table. Each possible command to a control
level will have a corresponding state table which will execute when that command is
received,

To better understand the way in which state tables are used, we explain the
ACQUIRE state table in some detail.

Looking at figure 8, the input variables in the upper left of the state table
are the "table test variables” which represent feedback variables from the lower
level and from sensory systems, as well as the values of internal variables. Every
cycle of the control system each of these variables is compared with the test condi-
tions in each and every line of the state table. A line is said to match the table
test variable if every input value in that line matches the table test variable's
value. 1If no lines, or more than one line matches, a STATE-TABLE error has occured.
If exactly one line matches then the procedures in the output section of that line
are executed. Figure 9 shows most of the procedures called by ACQUIRE. There are
no restrictions as to what a procedure must or must not do. However, they will
generally pass commands to the next lower levels in the hierarchy, process sensory
data, pass status back to the higher levels, and set the internal machine state. 1In
the current RCS, procedures are coded in an NBS developed language called SMACRO.
However, any language would be sufficient.

We must emphasize that we have no interest at this time in defining a standard
language for programming such procedures. In fact, given today's state—of-the-art,
we believe any such effort would fail. Instead we are pursuing standard interfaces,
and a standard structure based on hierarchical decomposition and communicating levels
of the hierarchy. The language used for specific computation seems to be of
secondary importance. Because the use of SMACRO is not a primary issue, we will not
present the syntax or features of SMACRO. Some SMACRO procedures (with obvious meaning
will be shown, but only for the purpose of explaining what is done.

The table test variables determine when commands should be executed., The table
test variables for the state table ACQUIRE are:

- new command.
True, if and only if a new command has been received from the level above. When
any command is sent, a command number is incremented and sent along with the
command. This incremental~command-number is used by a level to tell if a
command is new. A preprocessing routine which executes each and every cycle
sets the new-command flag if a new incremental-command-number is received.

- ref .~command-in

The command received by a lower level is echoed back.

- status—-in
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COMMAND STATUS

RELATED RELATED

PROCEDURES PROCEDURES

## SET-SOURCE #% EXECUTING
source-locpt-ptr-in = > locpt-ptr-out executing => status-report
obj-ptr-in => obj-ptr-out PRINT*‘ executing = >status-report "’
PRINT** SET-SOURCE "’
source-locpt~ptr-in => remember-current-loc end-routine

false => apoint-pos-flag

end-routine
#% DONE
done => status-report
#% LOCATE PRINT‘* done = >status-report '’

obj-ptr-in => obj-ptr-out end-routine

source-focpt-ptr-in => locpt-ptr-out
locate => output-command
PRINT® LOCATE ™ # PIC => FAILURE

end-routine pic = >ailure
PRINT** PIC = >FAILURE "
false => obj~acquired
nuli-obj => obj-now=-in-gripper

#% MOVE-TO null-obj => gripped-obj-ptr-out-to-emove
obj-ptr-in => obj-ptr-out
move-to => output-command end-routine

PRINT** MOVE-TO ™’

end-routine
#% CMD=>FAILURE
emd => failure
#% MOVE-TO-0BJ PRINT'* CMD = >FAILURE "’
obj-ptr-in = > obj-ptr-out
move-to~o => output-command end-routine

PRINT'* MOVE-TO-08BJ "’

end-routine
#4% MOVE = >FAILURE

move = > failure

## PICKUP PRINT** MOVE = >FAILURE "’
obj-ptr-in => obj-ptr-out null-loc. => remember-current-loc
pickup => output-command
PRINT'* PICKUP "’ end-routine

true => obj-acquired

obj-ptr-in => obj-now-in-gripper

obj-now-in-gripper => gripped-obj-ptr-out-to~emove
call REMOVE-FROM-BUFFER-DB

end-routine

Figure 9. SMACRO Procedures Used by ACQUIRE
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The status of the lower level: Executing, Done, or Failed.
- cur-state

An internal variable used for sequencing through the states of a state table,
Specific state variables are not required. Several of the state tables used ip
the November Run did not use a state variable for sequencing.

- loc-of~obj

The ACQUIRE command gives the location of the object to be acquired. The
database is accessed to determine if vision is required to locate the part at
that location. If vision is required, table test variable loc-of~obj = vision-
reqd, otherwise loc—of-obj does not equal vision-reqd.

- obj-acquired

This flag is an internal flag which will be true if there is currently an object
in the robot gripper.

- Source—spec.
This flag will be false if the SOURCE location has not been specified.

When the ACQUIRE command is first received, table-test-variable new-command
will be true, ref-command-in will be "pause", and status—in will be "done™. Only
lines 1, 2, 3, or 4 of state table ACQUIRE could possibly match.

Assuming the ACQUIRE command was legal, either line 1 or 4 will match depending
on loc-of-obj. If loc-of-obj equals vis-reqd then vision is required. Line 4
matches, and command MOVE-~TO is issued to the E~MOVE level. (Note that MOVE-TO
is itself a procedure but its effect is simply to issue the MOVE-TO command.) In
the case that the SOURCE location is a pallet of some type, a sector—number will be
sent from the WORKSTATION as part of the ACQUIRE command, and the robot will move to
the correct viewing pose for that sector. This will be addressed further in sec~
tion 3.2. Procedure 2-NEXTSTATE sets cur—-state to 2. While the robot is moving,
the status-in value will be “"executing” and line 15 will match. Eventually the
robot will reach the specified goal point, the E-MOVE level will report status—in =
done, and line 6 will match. The variable cur-state will be set to 3, and procedure
LOCATE commands the E-MOVE level to locate the specified object using vision.
LOCATE returns the x and y offsets and roll angle which will place the robot gripper
directly over the object, aligned with the axis of the object. While LOCATE is
executing, the TASK level state table for ACQUIRE will again match on line 15.
When LOCATE completes, status—in will equal done, and line 7 will match. The pro-
cedures executed in line 7 will set the NEXTSTATE to 5, and will execute procedure
PICKUP. PICKUP passes an object—-pointer down to the E-MOVE level so the PICKUP
command can use the database to determine the expected size of the object to be
grasped and compare it with the actual finger spacing after the grasp operation;
passes the command PICKUP to the E-MOVE level; sets true into object—-acquired
because as soon as the pickup completes, an object will be in the gripper; and
sets an object pointer to indicate what is currently in the gripper.

When the E-MOVE level reports the PICKUP command is done, line 8 of the ACQUIRE
state table matches and the ACQUIRE command is complete. A PAUSE is sent down to
the next lower level, a DONE is reported back to the WORKSTATION, and the next state
is set to the done-state. From then on, line 9 will match until a new command is
received.
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When ACQUIRE is a new command and the loc~of-obj is not equal to vis-reqd, then
vision is not required. Line 1 will match, and the MOVE-TO-0BJ command will result
in the gripper being opened to the approach-opening of the named object, and the
robot moving to the source location. When the MOVE-TO-OBJ is done, line 5 matches
and from there execution proceeds as already described for the case where vision is
required.

Lines {0 to 13 handle the several types of failures which may occur. In these
specific cases, no error recovery was attempted. The type of error is simply
reported to the level above via the variable "failure" passed to the WORKSTATION.

If, when ACQUIRE was first received, either and object has already been
specified or the source is not specified, lines 2 or 3 would match because the
command is illegal. Procedure CMD=>FAILURE prints a message, and sets the word
"command” into a variable failure" which will be returned to the WORKSTATION to
indicate the type of failure which occurred. Procedure F-NEXTSTATE sets variable
cur-state to a value indicating a failure. In this failure case, 1line 14 will
match on the next cycle, commanding the lower level to PAUSE and returning a fail to
the level above. Line 14 will continue to be executed until a new commmand is
received.

The other state tables and procedures look and function similar to the ACQUIRE.
3. COMMON MEMORY
The communications buffers, dictionary, and database all reside in common memory.

3.1 COMMUNICATION BUFFERS

All communication between the control levels, sensory systems, robot, gripper,
and other subsystems occurs via the common memory communications buffers. A con-
venient user interface to the communication system makes all of the implementation
details of communication transparent to the user. To effect the transfer of any set
of variables in any control level or subsystem to a corresponding set of variables
in any other control level or subsystem the user completes the following form:

Preprocess name
Postprocess name
TRANSFER-FROM  LEVEL BUFFER
TO-DESTINATION LEVEL BUFFER

The first two names, Preprocess name and Postprocess name, permit the user to
specify a list of routines to execute before the data is transferred and after the
data transfer is complete. The Preprocessing and Postprocessing routines can be used
to handle any special handshaking protocols required. The source of the data is
speczified by giving the control level name and the name of the list of variables to
be transferred. The destination for the data is similarly specified by giving the
level and buffer names. Naturally, the type and number of data items must be identi-
cal in both source and destination buffers but the names of the data items themselves
are arbitrary,

At the hardware level the communication system transfers data every cycle.
Every cycle the source buffers are transferred intu the common memory communication
buffers. The destination buffers are updated appropriately from common memory.

Figure 10 shows the command and status buffers transferred in the current robot
application of RCS.
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COMMANDS
FROM
WORK STATION TASK LEVEL

input-command-var

cycie-cnt-#-in
inc-command-#-in
a-input-command
a-obj-name-in
a-source-locpt-name-in
a-dest-iocpt-name-in
s-end-at-focpt-name-in
soctor-in

output-command-var

cycle-cnt-#-out
inc-command-#-out
output-command

obj-ptr-out

locpt-ptr-out

apoint-pos-fiag
gripped-obj-ptr-out-to-emove
moviab-ptr-emove-out

STATUS
RETURN TO
WORK STATION

output-status-var

cycie-cnt-#-status-out
cycle~cnt-#-echo-out
inc-command-#-echo-out
ref-command-echo
elapsed-time-status-out
status-report
status-parameter-output
failure )

input-status-var

cycle~cnt-#-status-in
cycle-cnt-#-status~-echo-in

ine & ,
nc SCNO-in

ref-command-in
status-in
status-parsmeter-in
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COMMANDS TO
E-MOVE E-MOVE

input-command-var

cycle-cnt-#=in
inc-command-#-in
input-command
obj-ptr=in
locpt-ptr-in
apoint-pos-flag
Qripper~obj-ptr=in
movtab-ptr-emove-in

output-command-var

cycle-cnt-#-out
inc-command-~#-out
output-command
obj-ptr-out

pose-ptr-out
moviab-ptr-out
trej-para-ptr-out
end-effector-para-ptr-out
gripper-obj~pir-out

COMMANDS TO
PRIMITIVE

Figure 10. Communications

STATUS RETURN
TO TASK

output-status-var

cyclie-cnt-#-status-out
cycle-cnt-#-echo-out
i

Aefeach 2

ret-command-echo
status-report
failure

input-status-var

cycle-cnt-#-gtatus-in
cycle-cnt-#-gtatus-echo-in
i

delieacho-in

ref-command-in
status-in
fallure-in

STATUS FROM
PRIMITIVE



COMMANDS TO
PRIMITIVE LEVEL

input-command-var

cycle-cnt-#-in
inc-command-#-in
input-command
obj-ptr-in

pose-ptr-in
movtab-ptr-in
traj-para-ptr-in
end-effector-para~ptr-in

output-command-var

cycie-cnt-#~-out
inc-command-#-out
output~command
next-position-out
stop-f

STATUS RETURNED
TO E ~ MOVE

output-status-var

cycie-cnt-#-status-out
cycle-cnt-#-echo-out
inc-command-#-echo-out
ref-command-echo
elapsed-time-status-out
status-report

failure

input-status-var

cyclie-cnt-#-status-in
cycie-cnt-#-~status-echo-in
inc-command-~#-echo-in
ref-command-in
elapsed-time-status-in
status-in
status-parameter-in
dist-to~-gp

t STATUS FROM COORD. JOINT

COMMANDS TO COORDINATED JOINT LEVEL

output-gripper-req-var

inc-command-#-gripper-out
gripper-command-out
force-gripper-out
size-gripper-out
vel-gripper-out

gripper-input-vars

gripper-inc-command-#-echo-in
grip-ret-cmd

gripper-status-in

g-status-arg

finger-position-in
left-tinger-force-in
right-finger-force-in

velocity-in

left-touch

right-touch

tSTATUS FROM GRIPPER CONTROLLER

COMMAND TO GRIPPER CONTROLLER

o

Figure 10. Primitive Level Communication (Continued)
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Although the RCS Control levels execute once per cycle this does not mean tha
any level must necessarily respond in one cycle. From the point of view of the
state tables and procedures, each level is fully asynchronous.

3.2 DATA

The control levels discussed above are only one-half of an application solution,
Defining the geometry of each part, and the location of each point is also importane,
One of the primary objectives of the NBS Control System is to ensure that, to the
maximum extent possible, commands are data driven. Changes to the part geometry or
physical layout of the workspace will not change the algorithms at all -- only the
data. Eventually, this data will be entered automatically from manufacturing
databases containing the workstation layout, part geometry, etc.,

The data which the user enters into the system define information relating to:

1. Objects, their grip size and grip location on the object, and a position from
which to view each grip location.

2. Locations in the workspace such as fixtures, tables, trays, etc. Included in
this data 1is the location of these points, and in the case of arrays of points
"such as pallets) the geometry of the arrays.

3. Trajectories which define how to move from one location in the workspace to
another. :

All of the state tables and procedures are written using symbolic variables.,
Control levels attach data to these symbolic values only when the data is needed,
The mechanisms which access the data structure are system procedures, almost totally
transparent to users, state tables, and control level procedures.

In RCS, position and part data. are entered using a Forms System. The actual
data is stored in the common memory, but all of the details of storing and accessing
this data are transparent to the user,

3.2.1 Poses

The most fundamental element of data required for robot programming is to
assoclate a specific position and orientation in space space with a name.

POSE FORM
x-val y-val z-val "mov-name” | "pose~name"
X] yi z]
X2 y2 z2
x3 ¥3 z3 name

The X), ¥1, 21, X2, Y2, 22, and x3, y3, 23 values define the coordinates of the robot
wrist plate, a unit vector defining the orientation of the wrist plate, and a unit
vector defining the wrist plate rotation., Together, the coordinates of these points
unambiguously define the exact position and orientation of the robot. The nine
required values can be entered by moving the robot to the desired position in space
and hitting the “learn” button on the joystick. In this case the nine values (x)
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to z3) will be entered automatically. The nine values can also be entered from
the keyboard if these values are known.

Column four of the POSE-FORM can be blank or can contain the name of a movtable.
Movtables are used to specify offsets from any robot pose. Movtables will be
discussed in more detail in the next section.

The above POSE data together determine an exact position and orientation (called
a pose) in space. Every such defined pose must be given a name. This name is
entered in column five of the POSE-FORM. As many poses as desired can be entered in
the POSE~-FORM. Each pose name represents a pose in space.

3.2.2 Movetables

It is often desirable to define positions relative to some starting pose,
independent of where in space that starting pose is. The vehicle for specifying such
relative offsets is a movtable and the form is a MOVTAB-FORM.

MOVTAB-FORM
w, h X y z
ho, wo pit yaw
r roll
type del del del "movtab—name”
w 0 0 2
h 3 0 0

name

Movtables specify offsets from the current robot pose. Each line of MOVTAB-FORM
specifies a specific move. There are five coordinate systems which can be used to
define the offsets:

World - Xy, Vy 2 Translate tool point along a vector defined for the
' work space.

Handwrist - Xy, ¥V, 2 Translate tool point along a vector defined in the
hand.

Hand origin - X, ¥ Rotate pitch (x) and yaw (y) about the current

rotate position of the fingers, leaving the tool point

fixed in space.

Wrist origin - x, vy Rotate in pitch (x) and yaw (y) leaving wrist point
fixed in space.

Fingerroll - X Rotate fingers around the center line between the
fingers.
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A movtable can define any combination of up to eight translations and rotatiogn
RCS interprets the lines in the order in which they are listed in the table., The S
physical motion of the robot is the resultant of all the lines of the movtable, The
robot will make one smooth move from its original location to the resultant
destination.

3.2.3 Objects

The user of RCS specifies the relevant features of the objects to be manipulatey
using three forms:

GRIP-SIZE, GRIP-LOCPT-MOVTAB FORM, and VIEW-LOCPT-MOVTAB FORM. First, we
describe the GRIP-SIZE FORM.

GRIP-SIZE FORM

ref appr. grasp grasp depart

"object name” grip # size size force size
FLAG 1
FLAG 2

Column one of GRIP-SIZE specifies the object name, and column two specifies the
reference grip #. For each grip position of each object a gripper approach size,
grasp size, grasp force, and depart size can be specified. 1If not specified, the
approach size and depart size default to the gripper full open size, and the grasp
force defaults to 100 lbs in the currently running system. Each named object may
have many ref grip #'s. A separate line is completed for each grip position.

Form GRIP-LOCPT-MOVTAB FORM is used to specify the offsets required to define
grip positions.

GRIP-LOCPT-MOVTAB FORM

ref ref ref grip
“obj-name"” _grip # type "loc~name” “"mov-name”
FLAG ) 1 $8$ FL~GRIP-V
FLAG 2 FL-GRIP-VR

For each part, and each grip position, a movtable must be specified to
define (as described in section 3.2.2) the offsets from the object origin to
the desired grip orientation. It is possible that the orientation of the robot
gripper may be different for different locations of the part. For example, grip
position 1 for object FLAG when the FLAG is on the buffer table may require a
slightly different robot gripper position than if the FLAG is in the machine tool
fixture. 1f there is a dependence, then the grip position entry may be qualified.

19-24



The location name where the movtable specified is to be used is entered in column
four ref "loc-name"”, and the ref type of that location (pose, location point, or
array) is entered in column three ref type. The wild-card symbol $$$ can be used in
column four to indicate "all locations not otherwise specified.”

In the currently operating robot system, a vision system is mounted on the robot
arm. Depending on the location of a part and on the particular ref grip, it may be
necessary to move the robot to a view pose to observe the part with the vision
system. For each ref grip of each part, at each location, a viewing position can
be specified using VIEW-LOCPT-MOVTAB FORM.

VIEW-LOCPT-MOVTAB FORM

ref v-ref v-ref vu-offset mov-ref
"obj=-name"” grip type "loc—name"” "mov-name"” type range
FLAG 1 arr ST-1-A GR-PIC "~ obj 400

The object name and reference grip # are entered in the first two columns of
VIEW-LOCPT-MOVTAB FORM. The expected range to the object is entered in column
seven. (This has been proven useful for vision system.) As in the case of grip
positions, view positions can be further qualified by specifying the name and type
(columns three and four) of a specific part location. The wild-card symbol $$$
again means “"every other location explicitly listed.” Column five specifies the
movtable which gives the offsets for the view position. For those lines of the
table which specify a location, column six of the form indicates whether the
movtable offsets are with respect to that location, or with respect to the object

origin.
3.2.4 Location Points

A named location can be defined by specifying a pose plus a movtable.
LOCATION FORM is used to specify the location and orientation associated with a
given name.

LOCATION FORM

"loc-name"” "pose-name"” “movtab-name”

BUFF-SAFE BUF-P BUF-SAFE-M

The ASCII name of the location point is listed in column one. The
specification of the physical location and orientation associated with that name is
entered in columns two and three. Column two is the name of a pose, and column
three specifies a movtab name. That movtable gives offsets from the pose, and the
resultant location and orientation is then the "meaning” of the named point.
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3.2.5 Arrays

Often, a named location may not be a single point in space, but may be an arr,
of points. A box or pallet which contains workpieces is an example, The current
version of RCS permits one- or two-dimensional arrays to be given a symbolic name,
just as was done for points. Whenever that symbolic name 1s used as a source or
destination location of the robot, RCS will automatically adjust the actual positig,
of the robot to the next full pallet position if a plece is being grasped or to the
next empty position if a part is being released.

ARRAY-DIM FORM

# # of # of lst 2nd #
"array-name” dim rows columns “movtab” "movtab” pres
ST-1-A 2 3 3 y-st X-st 9

L )

Entry "array-name” is any ASCII string which identifies the array. Column two
specifies whether the array is one- or two-dimensions. Columns three and four
specify how many distinct elements there are in each row, and in each column (for
two-dimensional case). The geometry of the pallet is defined via columns five and
six. These two entries are the names of movtables which specify the vertical and
horizontal offsets for the array rows (and columns). Finally, the last entry is
initialized to the number of filled locations in the pallet.

3.2.6 Owmers

Sections 3.2,7 and 3.2.8 describe how to define trajectories between points,
For this specification it is often useful to group a set of locations under a single
owner. Trajectories can then be specified to or from any of these points with one
specification to or from the owner. Without the ability to aggregate points in this
manner, the number of trajectories necessary to get from any named point to any
other would grow exponentially. The form for specifying owners is OWNER FORM.

OWNER FORM
“owner—name" member type “mem—name”
BUFFER arr FL-BUF-A
arr BB-BUF-A
arr BT-BUF-A
arr HS-BUF-A

Column one is the owner name. Columns two and three give the type and name of each
member.

3.2.7 Approach and Departure Trajectories

Specific objects and specific loactions will have requirements as to how the
robot approaches and departs. The user must enter these values in form A/D.
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A/D FORM

Appr or

dept type “name" ref-grip# loc-type “"loc-name”
acc vel ! smooth pPpt path-pt
fac max acc brk-dist type "name”
appr arr ST-1-A

5 20 07 200 mtb "name”

5 20 07 200 mtb "name 2"
dept obj BOXT 3 $$$

5 20 07 200 mtb "name "
dept obj BOXT 3 lpt V-BLOCK
5 20 07 200 mtb VB=A/D-H

The columns of form A/D have a header format and data format. The header
format
Appr or
dept type "name"” ref-grip# loc-type "loc-name"

identifies the trajectory. Column one identifies whether it is an approach or
departure trajectory. The next two columns identify the specific beginning (for
departure) or end (for approach) of the trajectory. Trajectories may begin or end
at objects, location points, arrays, or owners. Hence, column two must indicate one
of these four types. The third column is the name of the location point, array,
object, or owners. arr, or obj. If type = obj a reference grip # is required, and
the form entry may be further qualified by entering a location type (array or loca-
tion point) and the name of the location. Such qualification permits the same object
and grip position to be approached (or withdrawn from) differently depending on
where the object is. The wild-card symbol $$$ an again be used for all otherwise
unspecified locations.

The data format for form A/D is:

acc vel smooth ppt path-pt
fac max ace brk-dist type “name"”

The first four entries specify parameters of motion for this part of the trajectory.

Acc-fac specifies the maximum acceleration, vel-max specifies the maximum
velocity, smooth-acc specifies a smoothing parameter, and brk-dist determines how
close to a goal point the end-effector must come before the robot will begin moving
to the next point in a trajectory. Columns five and six specify the type and name of
the specific trajectory point or offset from the previous reference pose. A
trajectory points must be a pose, location point, or movtable.

As many trajectory points as desired may be listed for each trajectory.
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3.2.8

Intermediate Trajectories

Approach and departure trajectories do not specify how to get from the last

point of a departure trajectory to the first point of an approach trajectory.
is specified with TRAJ FORM.

Thisg

TRAJ FORM
"traj-name” start-type “start name” end-type "end-name"”
acc vel smooth path-pt
fac max acc brk-dist type "name"”
BUF-STAT arr BUFFER arr STATION
10 40 20 600 lpt BUFF-SAFE
10 40 20 600 lpt BUFF-SAFE

As with the approach and departure trajectories, entries in form TRAJ have a
header and a data format. The header format is:

"traj-name” start-type “"start name” end~type “end-name”
These entries identify the trajectory by naming the beginning and end points of the
move, Column one is a name given to this trajectory. Columns two through five
are, respectively, the type and name of the start and end points of the trajectory.
The only valid types for the start and end points are array, location point, or

owner.

The header format for TRAJ FORM has the identical format, with the identical
set of legal values as for the A/D FORM discussed previously since, in both cases,

the parameters of motion for the robot, and the trajectory points themselves must be
specified.

3.2.9 Data-Control Interface

RCS uses the data entered into the forms system to set up an internal structure
which is then referenced by system procedures. As an example, commands SRC-CALC,
DEST-CALC, and END-CALC are are called from the TASK level once for each new
command. They use the object name, and source, destination, and end-at location
names to access the data structures and generate the set of named goal points which
are the desired path. At the E-MOVE level, command NEXT-POINT accesses each next
point in the trajectory until there are no more points.

3.3 DICTIONARY

The third major part of the common memory is the dictionary. The dictionary
contains records for every variable, every procedure, every state table, every
list of variables, and every list of procedures. It 1s the dictionary which makes
the interactive features of RCS possible. When a procedure name is typed on the
terminal, for example, the system will look in the dictionary to locate that
procedure name. Assocliated with that entry is a pointer which locates the actual
procedure. In the above example, the procedure would then be executed.
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The reason for the indirect pointer mentioned above is so that any procedure
can be modified and reloaded (recompile). All references to the modified procedure
point to the indirect address. When a procedure is reloaded, the pointer is updated
to point to the new definition of the procedure, and all references now, indirectly,
point to the new definition of the procedure. The bottom line is, therefore, that
the definition of any procedure or state table can be modified, reloaded, and the
entire system run with the new definition with no other actions required.

The user should interact with the dictionary only to define variables, variable
owners, functionally bounded modules (procedures), executing owners, list owners,

and state tables.

A user can define a variable by entering VAR "name”. That variable can be
initialized by entering the initial value and ! after the variable name.

A list of variables can be defined by giving the list a name, followed by its
members.

VO "name of vo"

VAR "name"
VAR "name”
The values of every member can be seen by entering SHOW "name of VO”

on the keyboard. The name of every variable will be displayed.
To define a new procedure one enters:

p "procedure name”
body of procedure

end
A list of procedures can be defined:

eo "executing owner name”

p name
p name
e0 name
p name

As can be seen, executing owners can have other executing owners as members.
When the name of an executing owner is entered on the terminal or included on the
procedure side of a state table, all of the procedures in the executing owner will be
executed in the order listed. This mechanism permits procedures to be combined into
more complex functions while still remaining distinct, testable, and individually
executable.

A list owner is a bookkeeping tool provided the user to include anything he/she
likes under a symbolic name.

lo "list owner name”
name
name
name
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State Tables

State tables are stored in the dictionary by calling up a blank state table for
and entering the conditions and procedures. One cycle of the state table can be "
executed by typing the name of the state table.

4, DIAGNOSTIC SYSTEM

Because of the structure of the communication system, the relevant machine sta,
of all processes is available in the common memory every cycle, and the diagnostic
module has access to common memory data every cycle. A log of the machine state ig
made, permitting the NBS Control System to be stepped so the machine state at any
time can be observed. This greatly facilities debugging sensory interactive real
time applications where events happen at unpredictable times and there is usually pq
way to recreate the exact sequence of events which caused a particular problem,
Diagnostic data can be printed out on a conventional terminal, transferred across
a network to some central factory control computer, etc.

The Display Editor also provides an interface to graphics equipment which
provides real time graphical outputs of variables. This interconnection is shown
in figure 11, The Display Editor is used offline to specify what each of the con-
nected displays is to display, where on each screen this display origin should be,
and a scale factor. The real time display implemented in RCS, and the Display Editor
forms are shown below.

Display type NUMERIC

Variable "name"”
X pos
y pos

This display specification will cause the numeric value of the named variable to be
displayed at screen position (x pos, y pos). :

Display type BAR GRAPH

Variable “name"” min value
X pos max value
y pos # pixels

This display specification will cause a bar graph representing the value of the

named variable to be displayed at screen position (x pos, y pos). The next two
entries give the minimum and maximum expected values of the variable, and the last
entry, # pixels, specifies the height (in pixels) of the display.

Display type FUNCTION-PLOT

variable 1 “name"” _ max value 1
variable 2 "name” # pixels 1
X pos min value 2
y pos max value 2
min value 1 # pixels 2
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This display specification will cause a plot of named variable | against Named
variable 2, beginning at screen position (x pos, y pos). Min value, max value, and
# pixels entries are the same as for a bar graph.

Display type K-plot

variable 1 max value
variable 2 min value
X pos # pixels
y pos

A K-plot plots a set of vectors on the screen. The K-plot function can be ygeq
to display a stick figure robot moving on the screen, reading exactly the same datgy
as is (or as would be if the robot is disconnected) driving the robot. To get the
K-plot function to work properly, the buffers which include variable | must also
include variable 2 and must have data in the specific order.

variable 1 = x coord of vector 1
x coord of vector 2
x coord of vector 3

variable 2 = vy coord of vector |
y coord of vector
y coord of vector

w o

If the data values represent the x and y, x and z or y and z coordinates of the
robot joints (from the output of the coordinated joint function) then the real-time
orthographic projection of the robot arm will be displayed. Any other set of vectors
can similarly be displayed. A more complex graphics system could be easily inter-
faced which could display a real-time isometric view of the robot.

As shown in figure 11, the offline display specification is transferred to the
Screen Format Buffer in the Graphics Interface and the required communication
information is passed to the Communications Module. In real time, the data is
transferred from Common Memory to the Diagnostic Module and then to the Data Buffer
within the Graphics Interface.

One of the additional features soon to be added to the Diagnostic System is the
ability to dynamically change what is displayed based on real time data. In this
case, the Diagnostic Module will test the real time data and at the appropriate time,
tell the Display Editor to update the Screen Format Buffer in the Graphics Interface.
All of the required format information will reside in the Screen Format Buffer and
all of the real time data will be transferred each cycle. The display editor will
simply enable or disable the displays.

5. FUTURE PLANS

A great deal of testing and experimentation is still needed to evaluate RCS.
Based on this work, many changes and extensions will be made. Ultimately, we hope
that the subsystem interfaces developed through this work will become the basis for
standards leading to “plug compatible” industrial automation systems.
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